Toán 10: Phương trình đường thẳng đi qua 2 điểm trong không gian

Trong môn toán lớp 10, phương trình đường thẳng là kiến thức quan trọng được chú ý giảng dạy. Đây là dạng bài tập không quá khó nhưng lại rất dễ bị nhầm lẫn trong lúc giải. Để giải được bài tập này đòi hỏi bạn phải nhớ lý thuyết và tập giải nhiều lần. Bài viết sau đây lessonopoly sẽ gửi đến bạn cách giải bài tập liên quan đến phương trình đường thẳng. Các bạn hãy lưu ý nhé!

Phương trình đường thẳng là kiến thức trọng tâm của môn Toán lớp 10
Phương trình đường thẳng là kiến thức trọng tâm của môn Toán lớp 10

Tóm tắt lý thuyết phương trình đường thẳng

Vectơ pháp tuyến và phương trình tổng quát của đường thẳng

Vectơ pháp tuyến của đường thẳng

Vectơ n khác 0 và có giá vuông góc với đường thẳng được xem là vectơ pháp tuyến của đường thẳng. Khi đó, với k khác 0, vecto kn cũng là vectơ pháp tuyến của đường thẳng đó

Phương trình tổng quát của đường thẳng

Để viết phương trình tổng quát của đường thẳng d ta cần xác định :

   – Điểm A(x0; y0) thuộc d

   – Một vectơ pháp tuyến n( a; b) của d

Khi đó phương trình tổng quát của d là: a(x-x0) + b(y-y0) = 0

* Cho đường thẳng d: ax+ by+ c= 0 nếu đường thẳng d// ∆ thì đường thẳng ∆ có dạng: ax + by + c’ = 0 (c’ ≠ c) .

Trong các đề thi thì phương trình đường thẳng luôn là câu để học sinh lấy điểm
Trong các đề thi thì phương trình đường thẳng luôn là câu để học sinh lấy điểm

Vectơ chỉ phương và phương trình tham số, phương trình chính tắc của đường thẳng

Vectơ chỉ phương của đường thẳng

Vectơ a khác 0 và có giá song song hoặc trùng với đường thẳng được xem là vectơ chỉ phương của đường thẳng. Khi đó, với k khác 0 và vecto ka cũng là vectơ chỉ phương của đường thẳng đó.

Phương trình tham số của đường thẳng

Để viết phương trình tham số của đường thẳng ∆ ta cần xác định

    – Điểm A(x0, y0) ∈ ∆

phuong trinh duong thang 03

Để viết phương trình chính tắc của đường thẳng ∆ ta cần xác định

    – Điểm A(x0, y0) ∈ ∆

phuong trinh duong thang 04

(trường hợp ab = 0 thì đường thẳng không có phương trình chính tắc)

Chú ý:

   – Nếu hai đường thẳng song song với nhau thì chúng có cùng VTCP và VTPT.

   – Hai đường thẳng vuông góc với nhau thì VTCP của đường thẳng này là VTPT của đường thẳng kia và ngược lại

phuong trinh duong thang 05

Hãy tham khảo video sau đây để hiểu hơn về phương trình đường thẳng nhé!

Phương trình chính tắc của đường thẳng

Trong mặt phẳng với hệ trục toạ độ vuông góc OxyOxy, cho đường thẳng dd

phuong trinh duong thang 06

qua M0 (x0; y0) và nhận

làm vectơ chỉ phương. Phương trình tham số của đường thẳng dd là

phuong trinh duong thang 07

Trong trường hợp a và b đều khác 0 thì

phuong trinh duong thang 08

ta có phương trình chính tắc của đường thẳng d là

Phương trình chính tắc của đường thẳng
Phương trình chính tắc của đường thẳng

Phương trình đường thẳng đi qua 2 điểm

Cách 1: 

Giả sử 2 điểm A và B cho trước có tọa độ là: A(a1;a2) và B(b1;b2)

Gọi phương trình đường thẳng có dạng d: y=ax+b

Vì A và B thuộc phương trình đường thẳng d nên ta có hệ

Phương trình chính tắc của đường thẳng

Thay a và b ngược lại phương trình đường thẳng d sẽ được phương trình đường thẳng cần tìm.

Cách 2 giải nhanh

Tổng quát dạng bài viết phương trình đường thẳng đi qua 2 điểm: Viết phương trình đường thẳng đi qua 2 điểm A(x1;y1) và B(x2;y2).

Cách giải:

Giả sử đường thẳng đi qua 2 điểm A(x1;y1) và B(x2;y2) có dạng: y = ax + b (y*)

Vì (y*) đi qua điểm A(x1;y1) nên ta có: y1=ax1 + b (1)

Vì (y*) đi qua điểm B(x2;y2) nên ta có: y2=ax2 + b (2)

Từ (1) và (2) giải hệ ta tìm được a và b. Thay vào sẽ tìm được phương trình đường thẳng cần tìm.

Xem thêm: Công thức tính diện tích, tính chu vi tam giác thường và các tam giác đặc biệt chính xác nhất

Xem thêm: Các phương pháp phân tích đa thức thành nhân tử và bài tập áp dụng

Khoảng cách từ 1 điểm tới 1 đường thẳng

 Cho đường thẳng d: ax + by + c = 0 và điểm M ( x0; y0). Khi đó khoảng cách từ điểm M đến đường thẳng d là: d(M; d) = phuong trinh duong thang 11

+ Cho điểm A( xA; yA) và điểm B( xB; yB) . Khoảng cách hai điểm này là :

AB = phuong trinh duong thang 12

Chú ý: Trong trường hợp đường thẳng d chưa viết dưới dạng tổng quát thì đầu tiên ta cần đưa đường thẳng d về dạng tổng quát.

Vị trí tương đối của 2 đường thẳng

Cho hai đường thẳng d1: a1x + b1y + c1 = 0 và d2: a2x + b2y + c2 = 0. Xét vị trí tương đối của hai đường thẳng d1 và d2:

+ Cách 1: Áp dụng trong trường hợp a1.b1.c1 ≠ 0:

Các vị trí tương đối của hai đường thẳng
Các vị trí tương đối của hai đường thẳng

Cách 2: Dựa vào số điểm chung của hai đường thẳng trên ta suy ra vị trí tương đối của hai đường thẳng

Giao điểm của hai đường thẳng d1 và d2( nếu có) là nghiệm hệ phương trình:

phuong trinh duong thang 14

Nếu hệ phương trình trên có một nghiệm duy nhất thì 2 đường thẳng cắt nhau.

Nếu hệ phương trình trên có vô số nghiệm thì 2 đường thẳng trùng nhau.

Nếu hệ phương trình trên vô nghiệm thì 2 đường thẳng song song.

Các dạng toán về phương trình đường thẳng

Dạng 1: Viết PT đường thẳng (d) qua 1 điểm và có VTCP

– Điểm M0(x0;y0;z0), VTCP  phuong trinh duong thang 15

* Phương pháp:

– Phương trình tham số của (d) là: 

phuong trinh duong thang 16

– Nếu a.b.c ≠ 0 thì (d) có PT chính tắc là: 

phuong trinh duong thang 17

Ví dụ: Viết phương trình đường thẳng (d) đi qua điểm A(1;2;-1) và nhận vec tơ phuong trinh duong thang 18 (1;2;3) làm vec tơ chỉ phương.

* Lời giải:

– Phương trình tham số của (d) là: 

phuong trinh duong thang 19

Dạng 2: Viết PT đường thẳng đi qua 2 điểm A, B

* Phương pháp

– Bước 1: Tìm VTCP 

phuong trinh duong thang 20

– Bước 2: Viết PT đường thẳng (d) đi qua A và nhận  phuong trinh duong thang 21

  làm VTCP.

Ví dụ: Viết PTĐT (d) đi qua các điểm A(1; 2; 0), B(–1; 1; 3);

* Lời giải:

– Ta có: 

      phuong trinh duong thang 22(-2;-1;3)

 

– Vậy PTĐT (d) đi qua A có VTCP là 

phuong trinh duong thang 23

 có PT tham số: 

phuong trinh duong thang 24

Dạng 3: Viết PT đường thẳng đi qua A và song song với đường thẳng Δ

* Phương pháp

– Bước 1: Tìm VTCP 

– Bước 2: Viết PT đường thẳng (d) đi qua A và nhận vecto u làm vecto chỉ phương.

Ví dụ: Viết phương trình đường thẳng đi qua A(2;1;-3) và song song với đường thẳng Δ: 

phuong trinh duong thang 25

 làm VTCP

– Phương trình tham số của (d): 

phuong trinh duong thang 26

Dạng 4: Viết PT đường thẳng (d) đi qua A và vuông góc với mp (∝).

* Phương pháp

– Bước 1: Tìm VTPT vecto n  của mp (∝)

– Bước 2: Viết PT đường thẳng (d) đi qua A và nhận vecto n làm vecto chỉ phương.

Bài tập áp dụng phương trình đường thẳng

Bài tập 1: Viết phương trình đường thẳng đi qua hai điểm A (1;2) và B(0;1).

Bài giải: 

Gọi phương trình đường thẳng là d: y=ax+by=ax+b

Vì đường thẳng d đi qua hai điểm A và B nê n ta có:

phuong trinh duong thang 27

Thay a=1 và b=1 vào phương trình đường thẳng d thì d là: y=x+1

Vậy phương trình đường thẳng đi qua 2 điểm A và B là : y=x+1

Bài tập 2: Cho Parabol (P):y=–ײ . Viết phương trình đường thẳng đi qua hai điểm A và B biết  A và B là hai điểm thuộc (P) và có hoành độ lần lượt là 1 và 2.

Bài giải

Với bài toán này chúng ta chưa biết được tọa độ của A và B là như nào. Tuy nhiên bài toán lại cho A và B thuộc (P) và có hoành độ rồi. Chúng ta cần đi tìm tung độ của điểm A và B là xong.

Tìm tọa độ của A và B:

Vì A có hoành độ bằng -1 và thuộc (P) nên ta có tung độ y =−(1)²=–1 => A(1;−1)

Bài viết trên đã gửi đến bạn lý thuyết cũng như những bài tập về phương trình đường thẳng. Hy vọng bài viết trên có thể giúp ích được cho bạn trong việc giải bài tập. Phương trình đường thẳng là yêu cầu của rất nhiều bài tập cũng như trong đề thi nên các bạn hãy lưu ý nhé!

Trả lời